
58 The Delphi Magazine Issue 34

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Bad Uninstall

QAfter uninstalling a MultiEdit
demo program using the un-

install utility I keep getting the
following message: Could not find
Expert C:\....\MEWEX32.DLL. I
could not find any way of getting
rid of this message from within
Delphi, and no reference appears
in any of the relevant INI files.
Grepping around proved equally
fruitless. Simple question: how do I
get rid of this silly message?

ARun REGEDIT.EXE and look in:
HKEY_CURRENT_USER\Softwa

ware\Borland\Delphi3.0\Experts. If
you are using Delphi 2.0, make the
appropriate modification to the
registry path. In this key you
should see a reference to the no
longer resident expert. Select it
and delete the entry. That should
see to it.

Control Looping

QIs there an easy way to walk
through the different ob-

jects on a panel or a form? I have a
form. On that form are various edit
controls, some of which are cre-
ated dynamically and some are
made in design mode. What I want
to do is loop through the text fields
and put all the values in a string.

AYou could set up an array or
TList of all the appropriate

edit controls and loop through the
filled entries. Or, if you simply want
to iterate through all the edit
controls on a form, you can loop
through the Components array prop-
erty of the form, or loop
recursively through its Controls
property.

Which one is appropriate
depends on what you need. The

...
EditArray: array[1..3] of TEdit;
...
procedure TForm1.FormCreate(Sender: TObject);
begin
EditArray[1] := Edit1;
EditArray[2] := Edit2;
EditArray[3] := Edit3;

end;
procedure TForm1.Button1Click(Sender: TObject);
var
Loop: Integer;
Msg: String;

begin
Msg := '';
for Loop := 1 to 3 do
Msg := Msg + EditArray[Loop].Text;

ShowMessage(Msg)
end;

➤ Listing 1

procedure TForm1.FormCreate(Sender: TObject);
var Loop: Integer;
begin
for Loop := 1 to 3 do
EditArray[Loop] := FindComponent('Edit' + IntToStr(Loop)) as TEdit;

end;

➤ Listing 2

array and TList options are the
most flexible, but also the most
tedious to set up, especially if there
are many controls to loop through.
Let’s take a look at some of these
approaches with the project
Loopy.Dpr from this month’s disk.
This project has three edit con-
trols and employs a number of
mechanisms to loop through them
and display their contents. Listing
1 shows a simple, but dull way,
using an array that gets manually
populated.

In this particular program,
because the names of the edits are
all the same, with incrementing
numbers at the end, the setup code
can be abbreviated to that shown
in Listing 2.

Listing 3 shows the equivalent
when using a TList. Again, because
of the simple naming convention
Delphi follows, a FindComponent
loop can be used to fill the list. A
TList has the advantage of being
extendible, Delphi arrays must

have their size fixed at compile-
time.

The other methods of tackling
the problem involve the Compo-
nents and Controls arrays that all
components (and forms) possess.
You can get access to all compo-
nents on a form by looping through
the forms Components array, and for
every entry, looping through its
Components array and so on. All
components placed on the form at
design-time are owned by the form
(their Owner property will be the
form object). This means that they
will all appear in the form’s Compo-
nents array. Dynamically created
components will appear in the
form’s Components property so long
as you passed the form as the
parameter to the constructor.

You can get access to all the
TControl descendants on a form by
doing the same thing with the Con-
trols array. Controls that are chil-
dren of the form will be in the
form’s Controls property. Controls

60 The Delphi Magazine Issue 34

that are children of some compo-
nent on the form will be in the Con-
trols array property of that
component.

Listing 4 shows two routines that
do this and then write the name
and class of the found components
in some TStrings object. The code
that calls these routines passes in
the Items property of a TListbox
(see Figure 1 to view the results).

We can take advantage of this
approach to loop through all the
components and perform some
operation on all the edit controls,
or whatever is required. Listing 5
has code that loops through the
form’s Components array, concate-
nating edit control contents and
displaying them.

Of course, when looping through
the Components array, we have no
programmatic control over the
order of the edits we encounter. If
you need to ensure that the compo-
nents will be found in a particular
order, you will need to view the
form in text mode. In Delphi 2 and 3
you can right-click on the form and
choose View as Text. Delphi 1 users
can select File | Open File... and
then choose Form file from the
List files of type: combobox.

The textual view of a form has
child controls nested within their
parents. In any given parent, the
order in which you see the children
listed dictates the order in which
they will appear in the relevant
Components and Control arrays.

To iterate through all the Con-
trols array properties, looking for
some components, requires some
recursion. Listing 6 shows what is
required.

BDE Errors

QI need a place to look up
Borland Database Engine

Error Codes. I recently got an error
2109 error whilst initialising the
Database Engine. I cannot find any
listing of error codes for the BDE.
Where are they?

AThe best reference to these
creatures is the BDE import

unit (or units in Delphi 1). In the
16-bit world, the BDE is repre-
sented in all its glory by three

procedure ListControls(Control: TWinControl; List: TStrings);
var Loop: Integer;
begin
for Loop := 0 to Control.ControlCount - 1 do begin
with Control.Controls[Loop] do
List.Add(Format('%s: %s', [Name, ClassName]));

if Control.Controls[Loop] is TWinControl then
ListControls(TWinControl(Control.Controls[Loop]), List)

end
end;
procedure ListComponents(Component: TComponent; List: TStrings);
var Loop: Integer;
begin
for Loop := 0 to Component.ComponentCount - 1 do begin
with Component.Components[Loop] do
List.Add(Format('%s: %s', [Name, ClassName]));

ListComponents(Component.Components[Loop], List)
end

end;
...
ListBox1.Items.Clear;
ListControls(Form1, ListBox1.Items)

➤ Listing 4

➤ Figure 1

...
EditList: TList;
...
procedure TForm1.FormCreate(Sender: TObject);
var Loop: Integer;
begin
EditList := TList.Create;
{EditList.Add(Edit1);
EditList.Add(Edit2);
EditList.Add(Edit3); }
for Loop := 1 to 3 do
EditList.Add(FindComponent('Edit' + IntToStr(Loop)));

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
EditList.Free;
EditList := nil

end;
procedure TForm1.Button2Click(Sender: TObject);
var
Loop: Integer;
Msg: String;

begin
Msg := '';
for Loop := 0 to EditList.Count - 1 do
Msg := Msg + TEdit(EditList[Loop]).Text;

ShowMessage(Msg)
end;

➤ Listing 3

June 1998 The Delphi Magazine 61

procedure TForm1.Button3Click(Sender: TObject);
var
Loop: Integer;
Msg: String;

begin
Msg := '';
for Loop := 0 to ComponentCount - 1 do
if Components[Loop] is TEdit then
Msg := Msg + TEdit(Components[Loop]).Text;

ShowMessage(Msg)
end;

➤ Listing 5

procedure TForm1.Button4Click(Sender: TObject);
procedure LoopEdits(Ctl: TWinControl; var Msg: String);
var
Loop: Integer;

begin
for Loop := 0 to Ctl.ControlCount - 1 do begin
if Ctl.Controls[Loop] is TEdit then
Msg := Msg + TEdit(Ctl.Controls[Loop]).Text;

if Ctl.Controls[Loop] is TWinControl then
LoopEdits(TWinControl(Ctl.Controls[Loop]), Msg)

end
end;

var
Msg: String;

begin
Msg := '';
LoopEdits(Self, Msg);
ShowMessage(Msg)

end;

➤ Listing 6

units. You do not get the source to
these, but you do get what is im-
portant, the interface sections.
These can be found in Delphi’s
DOC directory. DbiProcs.Int con-
tains import declarations for all the
documented IDAPI functions. Dbi-
Types.Int defines all the data struc-
tures used by those functions.
Finally, DbiErrs.Int defines con-
stants for all the errors. In Delphi 2
and 3 all three units are combined
into the BDE unit. The DOC direc-
tory contains BDE.Int.

[Another good reference to BDE
error codes and lots of other BDE
information is ‘Delphi Database
Development’, by Blue, Kaster, Lief

{==}
{ Error Categories }
{==}

const
...
ERRCAT_SYSTEM = $21; { 33 System related (Fatal Error) }

...
ERRBASE_SYSTEM = $2100; { System related (Fatal Error) }

...
{==}
{ Error Codes By Category }
{==}
...
{ ERRCAT_SYSTEM }
{ ============= }
...
ERRCODE_CANTLOADIDAPI = 9; { Cannot load IDAPIxx.DLL }
...
DBIERR_CANTLOADIDAPI = (ERRBASE_SYSTEM + ERRCODE_CANTLOADIDAPI);

➤ Listing 7

and Scott, published by M&T Books,
ISBN 1-55851-469-4. Ed]

When the BDE generates an
error, it puts it in a certain category
and gives it a sub-code. The error
codes you typically see have both
these pieces of information. The
category is the high byte and the
sub-code is the low byte. Unfortu-
nately, trying to translate a number
back into a constant is a little
arduous, but let’s struggle on.

Let’s take your error number,
2109. This is more than likely a
hexadecimal number, so we will
assume it is in fact $2109. This
means a category of $21 and a sub-
code of 9. Checking the Pascal

interface files, the important infor-
mation is shown in Listing 7.

So the BDE constant for the
error code is DbiErr_CantLoadI-
DAPI. Unfortunately, you could
have probably guessed about as
much as this constant name and its
surrounding comments tell you.
There was a problem and so one or
more of the IDAPI DLLs couldn’t be
loaded. Now you need to figure out
why. Usually it’s because the BDE
is not installed, or not correctly
installed. Or, maybe the 16-bit BDE
is installed and you’re running a
32-bit program, or vice-versa.

The good thing about knowing
how to get these constants is that if
you are writing exception handling
code for database operations, you
can use them to aid clarity. A well-
named constant is always more
readable that a literal numeric
value. See the next entry for an
example that uses the BDE error
constants.

Trapping
Database Exceptions

QHow can I trap key violations
that occur when my users

are editing tables in data aware
controls? If the user is entering
data in a grid, there doesn’t seem
to be any of my code to put a
try..except block around.

You can set up a global excep-
tion handler via the Application
object’s OnException event (as
detailed in Changing the default
exception handler in Issue 14’s
Delphi Clinic) and trap for the
problem there. The KeyViol.Dpr
project on the disk serves as an
example of how to do this. This is a
simple program that tries to inter-
cept key violations, as one exam-
ple of a BDE error that could be
caught.

When a key violation occurs, an
EDBEngineError exception object is
manufactured with a list of error
objects held within its Errors array
property. There is always at least
one TDBError object in the array,
sometimes more. A TDBError
object has five properties. Error-
Code is the full BDE error number
(see the previous entry for details
of BDE errors in general). Category

62 The Delphi Magazine Issue 34

and Subcode are the high and low
bytes of ErrorCode respectively.
NativeError is a database server
error code number that needs to
be interpreted separately, and
finally Message is the server gener-
ated or the BDE generated error
message.

To see whether the EDBEngineEr-
ror represents a key violation we
can examine the first TDBError and
see if it has the right information.
We can check that ErrorCode has a
value of DbiErr_KeyViol, or Err-
Base_Integrity + ErrCode_KeyViol.
Alternatively we could check that
Category has a value of
ErrCat_Integrity and SubCode is
ErrCode_KeyViol. Choices, choices.

The global exception handler
from the project is shown in Listing
8. If a key violation is encountered
it simply writes this fact on the
form’s caption bar. All other excep-
tions are left to be dealt with in the
usual way.

Captionless Dragging

QHow can I allow my users to
drag my form without using

the caption bar (which will be ab-
sent)? The question also extends
to how I can allow arbitrary con-
trols to be dragged around on a
form.

AThere seems to be at least
two ways to accomplish this.

One way is to send the same mes-
sage to the target window that a

procedure TForm1.DoException(Sender: TObject; E: Exception);
begin
if (E is EDBEngineError) and
(EDBEngineError(E).Errors[0].ErrorCode = DbiErr_KeyViol) then
Caption := E.Message

else
Application.ShowException(E);

end;

➤ Listing 8

form receives when the user drags
it with the mouse. The other is to
pretend that the target window is
part of a caption bar (that is to say
part of the non-client area of the
window).

This is the way the system works
by default. Every time the mouse is
moved, messages are sent to the
window under the mouse (or that
has captured the mouse)
indicating a mouse movement
(wm_MouseMove) and to check for a
possible new mouse cursor
requirement (wm_SetCursor). Addi-
tionally, a message is sent to find
out whether the mouse is over part
of the non-client area of the
window. If it is reported to be over
the caption bar and the left mouse
button is pushed (generating a
wm_NCLButtonDown) and then
moved, a special wm_SysCommand
message is generated. You can see
these messages in Figure 2.

➤ Figure 2

If you, as a user, choose Move
from any system menu, you are
able to move the window around
the screen with the arrow keys on
your keyboard. You can match this
programmatically by sending a
wm_SysCommand message with a
WParam value of sc_Move. The par-
ticular wm_SysCommand message
seen in Figure 2 is almost, but not
quite, the same. It has a WParam
value of sc_Move+2, which equates
to mouse dragging of the window.

What all this means is that we
can drag any window around the
screen by the mouse in one of two
ways. Either we can trap for
wm_NCHitTest messages in the
appropriate component class and
return a value of HTCaption, or we
can send the window a wm_SysCom-
mand with a WParam of sc_Move + 2,
whenever the mouse is pressed on
the component.

The latter option is by far the
easiest general case. The Drag.Dpr
application on this month’s disk
shows how to make a generic
OnMouseDown event handler (which
in this case is shared between the
form and a panel on the form) to
achieve dragging controls upon
demand. Notice that if there is any
mouse capture enabled, it is neces-
sary to disable it. See Listing 9.

The other approach requires
message handling for the appro-
priate windows. Listing 10 comes
from Drag2.Dpr and shows a suit-
able wm_NCHitTest for a form. This
allows the form to be dragged by
the caption bar as normal, and also
the client area. Note however that

procedure TForm1.GenericMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
ReleaseCapture;
(Sender as TControl).Perform(wm_SysCommand, sc_Move + 2, 0);

end;

➤ Listing 9

TForm1 = class(TForm)
public
procedure WMNCHitTest(var Msg: TMessage);
message wm_NCHitTest;

end;
...
procedure TForm1.WMNCHitTest(var Msg: TMessage);
begin
inherited;
if Msg.Result = HTClient then
Msg.Result := HTCaption

end;

➤ Listing 10

June 1998 The Delphi Magazine 63

care is taken to ensure that the border icons and
normal border resizing are still allowed to function
normally. Only the client area is modified to allow
dragging.

Resetting Autoincrement Fields

QWhen using Paradox autoincrement fields in
Delphi, how do you reset the value back to zero

when you clear the file of records?

AUse the BDE’s DbiDoRestructureAPI to firstly con-
vert the autoincrement field to a long integer

field, and then convert it back to an autoincrement.
Similarly if you want to seed the autoincrement field
with a value other than zero, first create the table with
a long integer field, add a record and put the value that
you want into the field, restructure to convert to an
autoincrement and then empty the table.

For more information on the use of DbiDoRestructure,
check the Tips & Tricks column in Issue 27.

Acknowledgements
Thanks to Steve Axtell of Inprise’s European Technical
Team for the autoincrement information used this
month.

	Bad Uninstall
	Control Looping
	BDE Errors
	Trapping Database Exceptions
	Captionless Dragging
	Resetting Autoincrement Fields
	Acknowledgements

